estimated that the onset of wearable biosensors in the near future could be benchmarking

game changers in various fields of electro-analytical quality and quantificational analysis.

References

1. P. Panjan, V. Virtanen, A.M. Sesay, Determination of stability characteristics for electro­

chemical biosensors via thermally accelerated ageing, Talanta. 170 (2017) 331–336. 10.1016/

j.talanta.2017.04.011

2. D.R. Thévenot, K. Toth, R.A. Durst, G.S. Wilson, Electrochemical biosensors: Recommended

definitions and classification, Biosens. Bioelectron. 16 (2001) 121–131. 10.1016/S0956-5663(01)

00115-4

3. V. Perumal, U. Hashim, Advances in biosensors: Principle, architecture and applications,

J. Appl. Biomed. 12 (2014) 1–15. 10.1016/j.jab.2013.02.001

4. D. Grieshaber, R. MacKenzie, J. Vörös, E. Reimhult, Electrochemical biosensors – Sensor

principles and architectures, Sensors. 8 (2008) 1400–1458. 10.3390/s8031400

5. P.J. Conroy, S. Hearty, P. Leonard, R.J. O’Kennedy, Antibody production, design and use for

biosensor-based applications, Semin. Cell Dev. Biol. 20 (2009) 10–26. 10.1016/j.semcdb.

2009.01.010

6. S. Cagnin, M. Caraballo, C. Guiducci, P. Martini, M. Ross, M. Santaana, D. Danley, T. West,

G. Lanfranchi, Overview of electrochemical DNA biosensors: New approaches to detect the

expression of life, Sensors (Switzerland). 9 (2009) 3122–3148. 10.3390/s90403122

7. C. Liu, D. Yong, D. Yu, S. Dong, Cell-based biosensor for measurement of phenol and ni­

trophenols toxicity, Talanta. 84 (2011) 766–770. 10.1016/j.talanta.2011.02.006

8. L. Lu, X. Hu, Z. Zhu, Biomimetic sensors and biosensors for qualitative and quantitative analyses

of five basic tastes, TrAC – Trends Anal. Chem. 87 (2017) 58–70. 10.1016/j.trac.2016.12.007

9. A. Sassolas, L.J. Blum, B.D. Leca-Bouvier, Immobilization strategies to develop enzymatic

biosensors, Biotechnol. Adv. 30 (2012) 489–511. 10.1016/j.biotechadv.2011.09.003

10. I. Abdulhalim, M. Zourob, A. Lakhtakia, Overview of Optical Biosensing Techniques, (2008).

10.1002/9780470061565.hbb040

11. G. Rocchitta, A. Spanu, S. Babudieri, G. Latte, G. Madeddu, G. Galleri, S. Nuvoli, P. Bagella,

M.I. Demartis, V. Fiore, R. Manetti, P.A. Serra, Enzyme biosensors for biomedical applica­

tions: Strategies for safeguarding analytical performances in biological fluids, Sensors

(Switzerland). 16 (2016). 10.3390/s16060780

12. R. Monošík, M. Streďanský, E. Šturdík, Biosensors – classification, characterization and new

trends, Acta Chim. Slovaca. 5 (2012) 109–120. 10.2478/v10188-012-0017-z

13. A. Plecis, Y. Chen, Fabrication of microfluidic devices based on glass-PDMS-glass tech­

nology, Microelectron. Eng. 84 (2007) 1265–1269. 10.1016/j.mee.2007.01.276

14. B.K. Gale, A.R. Jafek, C.J. Lambert, B.L. Goenner, H. Moghimifam, U.C. Nze, S.K. Kamarapu,

A review of current methods in microfluidic device fabrication and future commercialization

prospects, Inventions. 3 (2018). 10.3390/inventions3030060

15. P. Rewatkar, S. Goel, Paper-Based Membraneless Co-Laminar Microfluidic Glucose Biofuel

Cell with MWCNT-Fed Bucky Paper Bioelectrodes, IEEE Trans. Nanobioscience. 17 (2018)

374–379. 10.1109/TNB.2018.2857406

16. P. Rewatkar, J. U. S. S. Goel, Optimized Shelf-Stacked Paper Origami-Based Glucose Biofuel Cell

with Immobilized Enzymes and a Mediator, ACS Sustain. Chem. Eng. 8 (2020) 12313–12320. 10.

1021/acssuschemeng.0c04752

17. P. Rewatkar, S. Goel, 3D Printed Bioelectrodes for Enzymatic Biofuel Cell: Simple, Rapid,

Optimized and Enhanced Approach, IEEE Trans. Nanobioscience. 19 (2020) 4–10. 10.1109/

TNB.2019.2941196

Printable and Flexible Biosensors

369